锐角三角形ABC中,B=π/3,则, 1.sinA+cosC 范围为. 2.(cosA)^2+(cosC)^2 范围为?

问题描述:

锐角三角形ABC中,B=π/3,则, 1.sinA+cosC 范围为. 2.(cosA)^2+(cosC)^2 范围为?

1、sinA+cosC
=sinA+cos(π-A-B)
=sinA-cos(A+π/3)
=sinA-1/2cosA+√3/2sinA
=(1+√3/2)sinA-1/2cosA
=√(2+√3)sin(A-5π/12)
0-5π/12范围是(-(2+√3)/2,1/2)
2、cos²A+cos²C
=cos²A+cos²(π-A-B)
=cos²A+cos²(A+π/3)
=[1+cos2A+1+cos(2A+2π/3)]/2
=1+1/2cos2A+1/2cos2A×(-1/2)-1/2sin2A×(√3/2)
=1/4cos2A-√3/4sin2A+1
=1/2(1/2cos2A-√3/2sin2A)+1
=1/2cos(2A+π/3)+1
00π/3所以范围[1/2,5/4)
参考