设数列{an}前n项和为Sn,已知(1/S1)+(1/S2)+.+(1/Sn)=n/(n+1),求S1,S2及Sn急

问题描述:

设数列{an}前n项和为Sn,已知(1/S1)+(1/S2)+.+(1/Sn)=n/(n+1),求S1,S2及Sn

用[(1/S1)+(1/S2)+.+(1/Sn)=n/(n+1)]-[(1/S1)+(1/S2)+.+(1/Sn-1)=n-1/n]
可得1/Sn=(n-1)/n+n/(n+1),进而可求S1、S2、Sn.