解不等式(X-1)2>a(x-2)+1(a为参数)不等号左边那个2是平方

问题描述:

解不等式(X-1)2>a(x-2)+1(a为参数)不等号左边那个2是平方

(x-1)²-a(x-2)-1>0
(x-1)²-a(x-1)+(a-1)>0
[(x-1)-(a-1)]×[(x-1)-1]>0
[x-a]×[x-2]>0
(1)若a>2,则解集是:x>a或x[(x-1)-(a-1)]×[(x-1)-1]>0请问这一步怎么得的 ?十字相乘法因式分解。可以写详细点吗?谢谢(x-1)²-a(x-1)+(a-1)>0 十字相乘法:x-1-(a-1)x-1-1则:(x-1)²-a(x-1)+(a-1)=[(x-1)-(a-1)]×[(x-1)-1]