(2^1+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)=?

问题描述:

(2^1+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)=?
“原式*(2^1-1)=(2^1-1)(2^1+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)
=(2^2-1))×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)
=(2^4-1)(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)
=(2^8-1)(2^8+1)×(2^16+1)×(2^32+1)
....
=(2^64-1)
所以原式=2^64-1
回答者:e”

(2^1+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)=(2^1-1)(2^1+1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1)×(2^32+1)/(2^1-1)=(2^2-1)×(2^2+1)×(2^4+1)×(2^8+1)×(2^16+1...