f(x)=sin^2x-cosx 的值域
问题描述:
f(x)=sin^2x-cosx 的值域
f(x)=sin^2x-cosx 中为什么sin^2x不降幂
答
答:
f(x)=sin²x-cosx
=1-cos²x-cosx
=-cos²x-cosx+1
设t=cosx∈[-1,1]
f(t)=-t²-t+1=-(t+1/2)²+5/4
抛物线开口向下,对称轴t=-1/2时取得最大值5/4
t=1时取得最小值f(1)=-1-1+1=-1
所以:值域为[-1,5/4]角度相同,不是同名函数不能降幂 是什么意思?本题目无需降幂