若a、b、c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:
问题描述:
若a、b、c是直角三角形的三条边长,斜边c上的高的长是h,给出下列结论:
① 以a2,b2,c2 的长为边的三条线段能组成一个三角形
② 以根号a,根号b,根号c的长为边的三条线段能组成一个三角形
③ 以a + b,c + h,h 的长为边的三条线段能组成直角三角形
④ 以1/a,1/b,1/c的长为边的三条线段能组成直角三角形
其中所有正确结论的序号为
答
直角三角形,a^2+b^2=c^2,a×b=c×h1)因为a^2+b^2=c^2,所以不能组成三角形2)能组成三角形,任意两边之和要大于第三边因为a+b>c,所以(根号a)^2+(根号b)^2>(根号c)^2(根号a)^2+(根号b)^2=[(根号a)+(根号b)]^2-2[根号(ab)...