(1+x)分之1+(1+x的平方)分之2+(1+x的4次方)分之4 化简、疾岌岌_ _
问题描述:
(1+x)分之1+(1+x的平方)分之2+(1+x的4次方)分之4 化简、
疾岌岌
_ _
答
=1/(1-X)+1/(1+X)+2/(1+X^2)+4/(1+X^4)-1/(1-X)
=[(1+X)+(1-X)]/[(1+X)(1-X)]+2/(1+X^2)+4/(1+X^4)-1/(1-X)
=2/(1-X^2)+2/(1+X^2)+4/(1+X^4)-1/(1-X)
=2[(1+X^2)+(1-X^2)]/[(1+X^2)(1-X^2]+4/(1+X^4)-1/(1-X)
=4/(1-X^4)+4/(1+X^4)-1/(1-X)
=4[(1+X^4)+(1-X^4)]/[(1-X^4)(1+X^4)]-1/(1-X)
=8/(1-X^8)-1/(1-X)
答
因为1/(1+X)+1/(1-X)=2/(1-X^2)
2/(1-X^2)+2/(1+X^2)=4/(1-X^4)
4/(1-X^4)+4/(1+X^4)=8/(1-X^8)
所以原式=8/(1-X^8)-1/(1-X)