若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
问题描述:
若f(x)=∫(1~x^2)e^(-t^2)dt(积分区间为1到x^2),计算定积分∫xf(x)dx积分区间为0到1
答
交换积分次序
∫[0,1]xf(x)dx
=∫[0,1]x∫[1,x^2]e^(-t^2)dtdx
=∫[0,1]e^(-t^2)∫[0,√t]xdxdt
=∫[0,1]e^(-t^2)*(x^2/2)[0,√t]dt
=∫[0,1]e^(-t^2)*tdt
=-1/2e^(-t^2)[0,1]
=1/2-1/(2e)
答
f'(x)=2xe∧-x^4
原式=1/2x^2f(x)(0~1)-∫(0~1)1/2x^2f'(x)dx
(分部积分法)
=1/2x^2f(x)(0~1) 1/4e^-x∧4(0~1)
(当x取0或1时)1/2xf(x)=0所以
原式=1/4e-x^4(0~1)=(e^-1-1)/4