已知a,b,c,d四个数满足a+b=1,c+d=1,ac+bd>1. 求证:这四个数中至少有一个是负数.
问题描述:
已知a,b,c,d四个数满足a+b=1,c+d=1,ac+bd>1.
求证:这四个数中至少有一个是负数.
答
证明:假设a、b、c、d都是非负数,
∵a+b=c+d=1,
∴(a+b)(c+d)=1.
∴ac+bd+bc+ad=1≥ac+bd.
这与ac+bd>1矛盾.
所以假设不成立,即a、b、c、d中至少有一个负数.