设f(x2-1)=lnx2x2−2,且f[φ(x)]=lnx,求∫φ(x)dx.

问题描述:

设f(x2-1)=ln

x2
x2−2
,且f[φ(x)]=lnx,求∫φ(x)dx.

t=x2-1,则x2=t+1;因此:f(x2-1)=lnx2x2−2=f(t)=lnt+1t−1即:f(x)=lnx+1x−1所以:f(φ(x))=lnφ(x)+1φ(x)−1=lnx;因此有:φ(x)+1φ(x)−1=x;解得:φ(x)=x+1x−1;∫φ(x)dx=∫x+1x−1dx=∫x...