用数列极限的定义证明:lim根号(n平方+1)/n=1 n趋向无穷大

问题描述:

用数列极限的定义证明:lim根号(n平方+1)/n=1 n趋向无穷大

对于任意的ε>0,取N=[1/ε]+1,则当n>N时
|√(n²+1)/n-1|=|[√(n²+1)-n]/n|=|1/{n[√(n²+1)+n]}|≤1/n所以lim根号(n平方+1)/n=1

有疑问请追问,满意请选为满意回答!

对于任意的ε>0,取N=[1/ε]+1,则当n>N时
|√(n²+1)/n-1|=|[√(n²+1)-n]/n|=|1/{n[√(n²+1)+n]}|≤1/n