已知点M(-5,0),N(0,5),P为椭圆x^2/6+y^2/3=1上一动点,则三角形MNP的最小值

问题描述:

已知点M(-5,0),N(0,5),P为椭圆x^2/6+y^2/3=1上一动点,则三角形MNP的最小值

思路:易断定M,N在椭圆外,且分别在x,y轴上,距原点相等.则以MN为底的三角型ABP,高最小时,三角型面积最小,显然只有在P点椭圆的切线与MN平行时满足.有:2x/6+2y/3*y'=0,x=-2y,代入椭圆方程,易得(x,y)=(2,-1)或(x,y)=(-2,1...