设n是正整数,p是素数,(n,p−1)=k,证明同余方程x^n≡1(mod p)有k个解.

问题描述:

设n是正整数,p是素数,(n,p−1)=k,证明同余方程x^n≡1(mod p)有k个解.

对素数p,存在原根g.即g^i ≡ 1 (mod p),当且仅当i是p-1的倍数.由此,对i = 0,1,2,...,p-2,g^i (mod p)两两不同余,即mod p恰好取遍1,2,...,p-1.显然,x = 0不是x^n ≡ 1 (mod p )的解.对x = 1,2,...,p-1,存在i = 0,1,2,...