BE平分ABD,CF平分ACD,BE与CF相交于G,角BDC=140

问题描述:

BE平分ABD,CF平分ACD,BE与CF相交于G,角BDC=140
角BGC=100
求:角A的度数

因为 四边形内角和360
所以 角GBD+角GCD=360-100-140=120
因为 BE,CF分别平分角ABD,ACD
所以 角ABD+角ACD=2*(120)=240
所以 角A=360-140-240=-20
所以 无解