如图,△ABC是等腰三角形,AB=AC,AD是角平分线,以AC为边向外作等边三角形ACE,BE分别与AD、AC交于点F、G,连接CF. (1)求证:∠FBD=∠FCD; (2)若AF=3,DF=1,求EF的值.
问题描述:
如图,△ABC是等腰三角形,AB=AC,AD是角平分线,以AC为边向外作等边三角形ACE,BE分别与AD、AC交于点F、G,连接CF.
(1)求证:∠FBD=∠FCD;
(2)若AF=3,DF=1,求EF的值.
答
(1)证明:∵△ABC是等腰三角形,AB=AC,AD是角平分线,∴AD垂直平分BC,∴FB=FC,∴∠FBD=∠FCD;(2)过A作AH⊥BE于H点,如图,∵AB=AC,∴∠ABC=∠ACB,BH=EH,∴∠ABF=∠ACF,∵△ACE为等边三角形,∴AC=AE,∠...