在三角形ABC中,若(a+b+c)(b+c-a)=3bc,则角A为
问题描述:
在三角形ABC中,若(a+b+c)(b+c-a)=3bc,则角A为
答
解题思路是将b+c看做整体,化简,运用余弦定理.
(a+b+c)(b+c-a)
=(b+c)^2-a^2
=b^2+c^+2bc-a^2=3bc
∴a^2=b^2+c^2-bc
由任意三角形余弦定理可知:a^2 = b^2 + c^2 - 2·b·c·cosA
∴cosA=1/2
∵A为三角形内角
∴A=60°