已知函数f(x)=ex,曲线y=f(x)在点(x0,y0)处的切线方程为y=g(x). (Ⅰ)证明:对∀x∈R,f(x)≥g(x); (Ⅱ)当x≥0时,f(x)≥1+ax/1+x恒成立,求实数a的取值范围.

问题描述:

已知函数f(x)=ex,曲线y=f(x)在点(x0,y0)处的切线方程为y=g(x).
(Ⅰ)证明:对∀x∈R,f(x)≥g(x);
(Ⅱ)当x≥0时,f(x)≥1+

ax
1+x
恒成立,求实数a的取值范围.

(Ⅰ)证明:由题意知g(x)=ex0(x−x0)+ex0----(2分)令h(x)=f(x)−g(x)=ex−ex0(x−x0+1),则h′(x)=ex−ex0,----(3分)当x<x0时,h'(x)<0,h(x)单调递减;当x>x0时,h'(x)>0,h(x)单调递增;---...