ΔABC中,2sinBcosC=sinA

问题描述:

ΔABC中,2sinBcosC=sinA
(1)求证:B=C
(2)如果A=120°,a=1,求此三角形的面积

(1)由2sinBcosC=sinA :得sinA=sin(B+C)=sinBcosC+sinCcosB=2sinBcosC故sinBcosC+sinCcosB=2sinBcosC移项得:sinBcosC-sinCcosB=0即sinBcosC-sinCcosB=sin(B-C)=0故B=C(2)A=120°,a=1,则由(1)知:三角形是等腰三角...