如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为______.
问题描述:
如图,在正方形ABCD中,E为AB边的中点,G、F分别为AD、BC边上的点.若AG=1,BF=2,∠GEF=90°,则GF的长为______.
答
∵四边形ABCD是正方形,∴∠A=∠B=90°,∴∠AGE+∠AEG=90°,∠BFE+∠FEB=90°,∵∠GEF=90°,∴∠GEA+∠FEB=90°,∴∠AGE=∠FEB,∠AEG=∠EFB.∴△AEG∽△BFE,从而推出对应边成比例:AEBF=AGBE,又∵AE=BE,...
答案解析:根据相似三角形的性质,相似三角形的对应边成比例,即可求GF的长.
考试点:勾股定理;相似三角形的判定与性质.
知识点:此题考查相似三角形的性质的应用,利用勾股定理即可得解.易错点:如果学生没有发现相似三角形就无从入手解题了,或相似三角形对应边的比找不对.