已知函数f(x)=sinxcosx+sin^2x.1.求f(π/4)的值.2.若x属于[0,π/2],求f(x)的最大值及相应的x值.

问题描述:

已知函数f(x)=sinxcosx+sin^2x.
1.求f(π/4)的值.2.若x属于[0,π/2],求f(x)的最大值及相应的x值.

(1)解析:f(x)=sinxcosx+sin^2x=1/2sin2x-1/2cos2x+1/2=√2/2sin(2x-π/4)+1/2
f(π/4)=1
(2)解析:∵x属于[0,π/2]
2x-π/4=π/2==>x=3π/8,∴函数f(x)在x=3π/8处取极大值F(3π/8)=(√2+1)/2

这么简单的题目都不会?好好看书吧!

f(x)=(1/2)sin2x-(1/2)cos2x+(1/2)=(√2/2)sin(2x-π/4)+(1/2).1、代入计算,f(π/4)=1/2;2、x在[0,π/2],则2x-π/4在[-π/4,3π/4],最大是f(3π/8)=√2/2+1/2,最小是f(0)=0.