如图,点P是矩形ABCD的边AD上一动点,矩形的两条边长AB、BC分别为8和15,则点P到矩形的两条对角线AC和BD的距离之和为(  )A. 17B. 7C. 12017D. 172

问题描述:

如图,点P是矩形ABCD的边AD上一动点,矩形的两条边长AB、BC分别为8和15,则点P到矩形的两条对角线AC和BD的距离之和为(  )
A. 17
B. 7
C.

120
17

D.
17
2

连接OP,
∵四边形ABCD是矩形,
∴AC=BD,OA=OC=

1
2
AC,OB=OD=
1
2
BD,∠ABC=90°,
S△AOD=
1
4
S矩形ABCD
∴OA=OD=
1
2
AC,
∵AB=8,BC=15,
∴AC=
AB2+BC2
=
289
=17,S△AOD=
1
4
S矩形ABCD=30,
∴OA=OD=
17
2

∴S△AOD=S△APO+S△DPO=
1
2
OA•PE+
1
2
OD•PF=
1
2
OA•(PE+PF)=
1
2
×
17
2
(PE+PF)=30,
∴PE+PF=
120
17

∴点P到矩形的两条对角线AC和BD的距离之和是
120
17

故选C.
答案解析:由矩形ABCD可得:S△AOD=
1
4
S矩形ABCD,又由AB=8,BC=15,可求得AC的长,则可求得OA与OD的长,又由S△AOD=S△APO+S△DPO=
1
2
OA•PE+
1
2
OD•PF,代入数值即可求得结果.
考试点:矩形的性质;三角形的面积.
知识点:此题考查了矩形的性质.解此题的关键是将△AOD的面积用矩形求得,再用△APO与△POD的面积和表示出来.还要注意数形结合思想的应用.