已知-1≤x+y≤1,1≤x-y≤3,则3x-y的取值范围是______.
问题描述:
已知-1≤x+y≤1,1≤x-y≤3,则3x-y的取值范围是______.
答
令3x-y=s(x+y)+t(x-y)=(s+t)x+(s-t)y
则
,
s+t=3 s−t=−1
∴
,
s=1 t=2
又-1≤x+y≤1,…∴①
1≤x-y≤3,
∴2≤2(x-y)≤6…②
∴①+②得1≤3x-y≤7.
故答案为:[1,7]
答案解析:令3x-y=s(x+y)+t(x-y),求得s,t,利用不等式的性质可求3x-y的取值范围.
考试点:简单线性规划.
知识点:本题考查简单线性规划问题,可以作图利用线性规划知识解决,也可以用待定系数法,利用不等式的性质解决,是中档题.