f(x)=(x的平方—3x+1)e的x方的导数,并在函数曲线上求出点,使得曲线在这些点处的切线与x轴平行
问题描述:
f(x)=(x的平方—3x+1)e的x方的导数,并在函数曲线上求出点,使得曲线在这些点处的切线与x轴平行
答
因为f(x)=(x^2-3x+1)e^x 所以f"(x)=(x^2-x-2)e^x
因为e^x>0恒成立,所以满足条件只需x^2-x-2=0 所以x=-1或2
所以在点(-1,5/e) 或点(2,-e^2)