抛物线G:y²=4x,A、B为G上异于原点的两点,FA⊥FB,延长AF、BF交G于C、D求四边形ABCD面积的最小值
问题描述:
抛物线G:y²=4x,A、B为G上异于原点的两点,FA⊥FB,延长AF、BF交G于C、D求四边形ABCD面积的最小值
答
两直线垂直,焦点为(1,0),不妨设两直线为:y=k(x-1)与ky=1-x分别与抛物线方程连立(因为有两个交点,所以k≠0):y=k(x-1).(1)y^2=4x.(2)代入有k^2x^2-2k^2x+k^2-4x=0,k^2x^2-2(k^2+2)x+k^2=0|x1-x2|=√Δ/|a|=4√(k^2+1)/...