【数学证明题】如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.求证:
问题描述:
【数学证明题】如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.求证:
如图,△ABC中,AD是∠BAC的平分线,DE⊥AB于点E,DF⊥AC于点F.求证:
(1)AD⊥EF;
(2)当点D沿DA方向向点A运动时,DE⊥AB于点E,DF⊥AC于点F,此时(1)中结论是否仍然成立?
答
∵DA平分∠BAC
∴∠DAE=∠DAF
∵DE⊥AB于点E,DF⊥AC于点F
∴∠DEA=∠DFA
∵AD=AD
∴△DAE≌△DAF
∴AE=AF
DE=DF
∴AD是EF的垂直平分线
2)结论依然成立