求(1+xy)^[1/(x+y)] 极限 求(1+xy)^[1/(x+y)] 的极限 x趋向于0 y趋向于0

问题描述:

求(1+xy)^[1/(x+y)] 极限
求(1+xy)^[1/(x+y)] 的极限 x趋向于0 y趋向于0

极限不可能存在,当(x,y)沿直线y=-x趋于(0,0)时,1/(x+y)无意义

当x,y均趋于0时,
(1+xy)^[1/(x+y)]
=(1+xy)^{(1/xy)*[(xy)/(x+y)]}
=e^[1/(1/x+1/y)]
=e^0
=1