lim/x→0 /lim 2-2cosx/ sinx^2利用罗必塔法则求极限
问题描述:
lim/x→0 /lim 2-2cosx/ sinx^2利用罗必塔法则求极限
答
原题为lim(0/0)模型,所以可以用洛必达法则
∴lim/x→0/(2-2cosx)/sinx^2=lim/x→0/(2sinx)/(2sinxcosx)=lim/x→0/(1/cosx)=1它答案得2但我的计算没有问题啊,我觉得是答案错了。另:经计算机验证,应该是等于1没错