若x为三角形中的最小内角,则函数y=sinx+cosx的值域是( )A. [12,22]B. (0,32]C. (1,2]D. (12,22]
问题描述:
若x为三角形中的最小内角,则函数y=sinx+cosx的值域是( )
A. [
,1 2
]
2
2
B. (0,
]
3
2
C. (1,
]
2
D. (
,1 2
]
2
2
答
因为x为三角形中的最小内角,
所以0<x≤
π 3
y=sinx+cosx=
sin(x+
2
)π 4
∴
<π 4
+x≤π 4
7π 12
<sin(x+
2
2
)≤1π 4
1<y≤
2
故选C
答案解析:由x为三角形中的最小内角,可得0<x≤
而y=sinx+cosx=π 3
sin(x+
2
),结合已知所求的x的范围可求y的范围.π 4
考试点:正弦函数的定义域和值域.
知识点:本题主要考查了辅助角公式的应用,正弦函数的部分图象的性质,属于基础试题.