已知f(x)=x^2+ax+b,求证绝对值f(1),绝对值f(2),绝对值f(3)中至少有一个不小于1

问题描述:

已知f(x)=x^2+ax+b,求证绝对值f(1),绝对值f(2),绝对值f(3)中至少有一个不小于1

反证法:
假设a,b,c,d全是正数
则2=a+b+c+d=a+c+b+d≧2√ac+2√bd
即1≧√ac+√bd
平方得:1≧ac+2√acbd+bd
即:ac+bd≦1-2√acbd