已知a,b,c为三个非零实数,且a+b+c=0求证:[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+a/(b-c)+b/(c-a)]=9
问题描述:
已知a,b,c为三个非零实数,且a+b+c=0求证:[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+a/(b-c)+b/(c-a)]=9
有人解答过这一个说假设a=1,b=1,c=-2算出前一个因式是0因此说此要证明的式子错了,显然这种假设是不成立的,因为题目中已隐含了a,b,c不相等的关系,否则就没有意义了!请哪位大师帮着再看一看!急!谢谢谢!
答
因为a+b+c=0,所以c=-a-b,
所以(a-b)/c+(b-c)/a+(c-a)/b=(a-b)/(-a-b)+(b+a+b)/a
+(-a-b-a)/b=(b-a)/(b+a)+2b/a-2a/b,
通分,得(a-b)/c+(b-c)/a+(c-a)/b=(2b^3+3ab^2-3a^2b-2a^2)/[(a+b)ab]=(2b+a)(b+2a)(b-a)/[(a+b)ab].
而c/(a-b)+a/(b-c)+b/(c-a)=(b+a)/(b-a)+a/(2b+a)-b/(2a+b),
通分,得c/(a-b)+a/(b-c)+b/(c-a)=9ab(a+b)/[(2b+a)(b+2a)(b-a)],
所以[(a-b)/c+(b-c)/a+(c-a)/b][c/(a-b)+a/(b-c)+b/(c-a)]=9.