将参数方程:x=t/(1-2t^2),y=(1-2t^2)/(1+2t^2)化为一般方程

问题描述:

将参数方程:x=t/(1-2t^2),y=(1-2t^2)/(1+2t^2)化为一般方程

1-2t^2=x/t ,1-2t^2=y*(1+2t^2)
即x/t=y*(1+2t^2) 得到y=x/[t*(1+2t^2)]

由式1,得2t²=1-(t/x)
代入式2得:y=(1-1+t/x)/(1+1-t/x)=(t/x)/(2-t/x)=t/(2x-t)
解得t=2xy/(y+1)
再代入式1:x=2xy/(y+1)/[1-8x²y²/(y+1)²]
化简得::y²(1+8x²)=1