在△ABC中,AB=AC,AD⊥BC于点D,点E、F分别是AB、AC边中点,当△ABC满足条件什么时,四边形AEDF是正方形
问题描述:
在△ABC中,AB=AC,AD⊥BC于点D,点E、F分别是AB、AC边中点,当△ABC满足条件什么时,四边形AEDF是正方形
答
△ABC为等腰直角三角形时,四边形AEDF是正方形解题:若△ABC为等腰直角三角形,则D为BC中点,∠BAC为90度因为D为BC中点,F为AC中点 所以DF平行于AB 所以∠CFD=∠BAC=90°所以∠AFD=90°因为D为BC中点,E为AB中点 所以DE...