抛物线y^2=2x上的点到直线x+2y+3=0 的最短距离
问题描述:
抛物线y^2=2x上的点到直线x+2y+3=0 的最短距离
根号5/5 还是根号5
答
设(x1,y1)为抛物线上的点,则(x1,y1)到直线x+2y+3=0 的距离为
d=|x1+2y1+3|/√5
又因为(x1,y1)为抛物线上的点,则有y1²=2x1 即x1=y1²/2,则
d=|y1²/2+2y1+3|/√5
=|(y1²+4y1+6|/2√5
=|(y1+2)²+2|/2√5
显然,当y1=-2时,d取最小值=2/2√5=1/√5=√5/5
所以最短距离为√5/5