已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.

问题描述:

已知f(x)=2+log3x,x∈[1,9],求y=[f(x)]2+f(x2)的最大值及y取最大值时x的值.

∵f(x)=2+log3x,x∈[1,9],∴y=[f(x)]2+f(x2)=(2+log3x)2+(2+log3x2)=(log3x)2+6log3x+6,令t=log3x由题意可得1≤x≤91≤x2≤9即1≤x≤3,则t∈[0,1]∴y=t2+6t+6=(t+3)2-3在[0,1]上单调递增当t=1...