已知二次函数f(x)满足条件f(0)=1和f(x+1)-f(x)=2x.(1)求f(x);(2)求f(x)在区间[-1,1]上的最大值和最小值.

问题描述:

已知二次函数f(x)满足条件f(0)=1和f(x+1)-f(x)=2x.
(1)求f(x);
(2)求f(x)在区间[-1,1]上的最大值和最小值.

(1)设f(x)=ax2+bx+c,则f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b∴由题c=12ax+a+b=2x恒成立∴2a=2a+b=0c=1 得 a=1b=−1c=1∴f(x)=x2-x+1(2)f(x)=x2-x+1=(x−12)2+34...
答案解析:(1)设f(x)=ax2+bx+c,则f(x+1)-f(x)=a(x+1)2+b(x+1)+c-(ax2+bx+c)=2ax+a+b,根据对应项的系数相等可分别求a,b,c.
(2)对函数进行配方,结合二次函数在[-1,1]上的单调性可分别求解函数的最值.
考试点:二次函数在闭区间上的最值;二次函数的性质.
知识点:本题主要考查了利用待定系数法求解二次函数的解析式,及二次函数在闭区间上的最值的求解,要注意函数在所给区间上的单调性,一定不能直接把区间的端点值代入当作函数的最值.