在数列{an}中,a1=1,an+1=an1+nan,求an.

问题描述:

在数列{an}中,a1=1,an+1=

an
1+nan
,求an

an+1=

an
1+nan
可化为
1
an+1
-
1
an
=n,
1
a2
-
1
a1
=1,
1
a3
-
1
a2
=2,
1
a4
-
1
a3
=3,…,
1
an
-
1
an−1
=n-1.
相加得
1
an
-
1
a1
=1+2+…+(n-1),又a1=1,所以整理得an=
2
n2−n+2

所以数列{an}的通项公式an=
2
n2−n+2