若(2x−1x)n展开式中含1x2项的系数与含1x4项的系数之比为-5,则n等于( ) A.4 B.6 C.8 D.10
问题描述:
若(2x−
)n展开式中含1 x
项的系数与含1 x2
项的系数之比为-5,则n等于( )1 x4
A. 4
B. 6
C. 8
D. 10
答
(2x−
)n展开式的通项为1 x
Tr+1=
(2x)n−r(−
C
rn
)r=(-1)r2n-rCnrxn-2r1 x
令n-2r=-2得r=
n+2 2
故含
的系数为(−1)1 x2
2n+2 2
n−2 2
C
nn+2 2
令n-2r=-4得r=
n+4 2
故含
项的系数为(−1)1 x4
2n+4 2
n−4 2
C
nn+4 2
∴
=−5
(−1)
2n+2 2
n−2 2
C
nn+2 2
(−1)
2n+4 2
n−4 2
C
nn+4 2
将n=4,6,8,10代入检验得n=6
故选B