如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,请回答下列问题:(1)线段PC、PB与正方形的边长有什么关系?(2)∠CPB的度数是多少?(3)还能知道哪些角的度数?请指出来.

问题描述:

如图,把正方形ABCD对折,折痕为MN.把顶点D折到MN上的一点P上,折痕为CE,再把顶点A折到MN上的同一点,折痕为BF,请回答下列问题:
(1)线段PC、PB与正方形的边长有什么关系?
(2)∠CPB的度数是多少?
(3)还能知道哪些角的度数?请指出来.

(1)通过翻折变换的特点可知线段PC、PB与正方形的边长相等;
(2)∵PC=PB=BC,∴∠CPB=60°;
(3)由(2)可知:∠DCP=∠ABP=∠PEF=∠PFE=30°,∠PED=∠AFP=150°.
答案解析:通过翻折变换的特点可知线段PC、PB与正方形的边长相等;从而得到PC=PB=BC,即∠CPB=60°;直接通过补角以及三角形内角和可计算得:∠DCP=∠ABP=∠PEF=∠PFE=30°,∠PED=∠AFP=150°.
考试点:翻折变换(折叠问题).


知识点:本题考查图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,如本题中折叠前后角相等.