已知函数f(x)loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15].a>0,a≠1.
问题描述:
已知函数f(x)loga(x+1),g(x)=2loga(2x+t)(t∈R),其中x∈[0,15].a>0,a≠1.
(1)若1是关于x的方程f(x)=g(x)的一个解,求t的值.
(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值范围.
我是高一的.请多指教
答
已知函数f(x)=log‹a›(x+1),g(x)=2log‹a›(2x+t)(t∈R),其中x∈[0,15].a>0,a≠1.(1)若1是关于x的方程f(x)=g(x)的一个解,求t的值.(2)当0<a<1时,不等式f(x)≥g(x)恒成立,求t的取值...