阅读并解决问题. 对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中

问题描述:

阅读并解决问题.
对于形如x2+2ax+a2这样的二次三项式,可以用公式法将它分解成(x+a)2的形式.但对于二次三项式x2+2ax-3a2,就不能直接运用公式了.此时,我们可以在二次三项式x2+2ax-3a2中先加上一项a2,使它与x2+2ax的和成为一个完全平方式,再减去a2,整个式子的值不变,于是有:
x2+2ax-3a2=(x2+2ax+a2)-a2-3a2=(x+a)2-(2a)2=(x+3a)(x-a).
像这样,先添-适当项,使式中出现完全平方式,再减去这个项,使整个式子的值不变的方法称为“配方法”.
(1)利用“配方法”分解因式:a2-6a+8.
(2)若a+b=5,ab=6,求:①a2+b2;②a4+b4的值.
(3)已知x是实数,试比较x2-4x+5与-x2+4x-4的大小,说明理由.

(1)a2-6a+8,=a2-6a+9-1,=(a-3)2-1,=(a-3-1)(a-3+1),=(a-2)(a-4);(2)a2+b2,=(a+b)2-2ab,=52-2×6,=13;(2分)a4+b4=(a2+b2)2-2a2b2,=132-2×62,=97;(2分)(3)∵x2-4x+5,=x2-4x+4+1...