如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF. (1)证明:AF平分∠BAC; (2)证明:BF=FD; (3)若EF=5,DE=4,求AD的长.
问题描述:
如图,⊙O是△ABC的外接圆,FH是⊙O的切线,切点为F,FH∥BC,连结AF交BC于E,∠ABC的平分线BD交AF于D,连结BF.
(1)证明:AF平分∠BAC;
(2)证明:BF=FD;
(3)若EF=5,DE=4,求AD的长.
答
(1)证明:如图1,连接OF,
∵FH为圆O的切线,
∴OF⊥FH,
∴OF垂直平分BC,
∴BF=FC,
∴AF平分∠BAC;
(2)证明:由题意得:∠BAF=∠CAF,∠ABD=∠CBD,∠FBC=∠CAF,
∴∠BAF+∠ABD=∠CAF+∠CBD=∠FBC+∠CBD,即∠FDB=∠FBD,
∴BF=FD;
(3)在△BFE和△AFB中,∠EBF=∠FAC=∠BAF,∠BFE=∠AFB,
∴△BFE∽△AFB,
∴
=BF FE
,即BF2=FE•FA,AF BF
∴FA=
=BF2
FE
,81 5
则AD=
-9=81 5
.36 5