已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2011)+f(2012)的值为( )A. -1B. -2C. 2D. 1
问题描述:
已知函数f(x)是定义在(-∞,+∞)上的奇函数,若对于任意的实数x≥0,都有f(x+2)=f(x),且当x∈[0,2)时,f(x)=log2(x+1),则f(-2011)+f(2012)的值为( )
A. -1
B. -2
C. 2
D. 1
答
知识点:本题考查函数的奇偶性、周期性的应用,解题时要认真审题,仔细解答,注意合理运用等价转化.
∵对于任意的实数x≥0,都有f(x+2)=f(x),∴函数在[0,+∞)内的一个周期T=2,∵函数f(x)是定义在R上的奇函数,所以f(-2011)+f(2012)=-f(2011)+f(2012)=-f(2011)+f(2012)=-f(1)+f(0)又当x∈[0...
答案解析:由题设知函数在[0,+∞)内一个周期T=2,函数f(x)是定义在R上的奇函数,所以f(-2011)+f(2012)=-f(2011)+f(2012)=-f(1)+f(0),再由当x∈[0,2)时,f(x)=log2(x+1),能求出f(-2011)+f(2012)的值.
考试点:函数奇偶性的性质;函数的值.
知识点:本题考查函数的奇偶性、周期性的应用,解题时要认真审题,仔细解答,注意合理运用等价转化.