已知:f(x+y)+f(x-y)=2f(x)*f(y),x.y取任何实数且f(0)不等于0,求证:f(x)为偶函数

问题描述:

已知:f(x+y)+f(x-y)=2f(x)*f(y),x.y取任何实数且f(0)不等于0,求证:f(x)为偶函数

当x=0时,上式为:f(y)+f(-y)=2f(0)f(y)——a
当y=0时,上式为:f(x)+f(x)=2f(x)f(0)——b
将a式写成关于x的函数为:f(x)+f(-x)=2f(x)f(0)——c
因为f(0)≠0,所以从b式和c式可以得到:
f(x)+f(x)=f(x)+f(-x)
所以:f(x)=f(-x)
得出f(x)是偶函数。

当y=0时,f(x)+f(x)=2f(x)f(0),so,f(0)=1
当x=0时,f(y)+f(-y)=2f(0)f(y),so,f(y)=f(-y)
偶函数。
不知对不对

依题意有f(0+0)+f(0-0)=2f(0)*f(0)
又f(0)不等于0
所以f(0)=1
当x=0,y取任何实数时
f(0+y)+f(0-y)=2f(0)*f(y)=2f(y)
所以f(-y)=f(y)
所以f(x)为偶函数

你先令x=y=0,那么有f(0)=1,然后再令x=0,你就能看出来了