“例:若ab=1 求代数式a/(a+1)+b/(b+1)的值 ∵ab=1,∴a/(a+1)=ab/(a+1)/b=ab/(ab+b)=1/(b+1)
问题描述:
“例:若ab=1 求代数式a/(a+1)+b/(b+1)的值 ∵ab=1,∴a/(a+1)=ab/(a+1)/b=ab/(ab+b)=1/(b+1)
∴原式=1/(b+1)+b/(b+1)=1.”仿造上题的过程解答下题:若abc=1,求代数式a/(ab+a+1)+b/(bc+b+1)+c/(ac+c+1).
答
∵abc=1.
∴(1)a/(ab+a+1)=a/(ab+a+abc)=1/(bc+b+1).
(2)c/(ac+c+1)=c/(ac+c+abc)=1/(ab+a+1)=abc/(ab+a+abc)=bc/(bc+b+1).
(3)原式=1/(bc+b+1)+b/(bc+b+1)+bc/(bc+b+1)=(bc+b+1)/(bc+b+1)=1.
所以原式=1.a/(ab+a+abc)=1/(bc+b+1).如何成立