过椭圆x的平方/16+y的平方/4=1内一点P(3,1)作一条直线交椭圆与A,B两点,使线段AB被P平分,求此直线方程

问题描述:

过椭圆x的平方/16+y的平方/4=1内一点P(3,1)作一条直线交椭圆与A,B两点,使线段AB被P平分,求此直线方程

设直线方程为y-1=k(x-3)与椭圆的交点为:(x1,y1)(x2,y2)x1+x2/2=3,y1+y2/2=1直线代入椭圆得x^2/16+(kx-3k+1)^2/4=1(4k^2+1)x^2+8k(1-3k)x+4(1-3k)^2-16=0x1+x1=-8k(1-3k)/(4k^2+1)=6k=-3/4即y-1=-3/4(x-3)...