矩阵A与B的行向量组等价的充分必要条件为什么是齐次方程组Ax=0与Bx=0同解

问题描述:

矩阵A与B的行向量组等价的充分必要条件为什么是齐次方程组Ax=0与Bx=0同解
最好能证明一下,

证:必要性
因为A与B的行向量组等价
所以A可经初等行变换化为B
所以存在可逆矩阵P,使得 PA=B
易知 AX=0 的解是 PAX=0 的解.
反之,PAX=0 的解 也是 P^-1PAX=0 即 AX=0 的解
所以 AX=0 与 PAX=0 同解
即 Ax=0与Bx=0同解.
充分性
由 Ax=0与Bx=0同解
知 A,B 的行简化梯矩阵相同
即存在可逆矩阵P,Q,使得 PA=QB
所以 Q^-1PA=B
所以 A与B的行向量组等价.