如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF. (1)判断EF与AC的位置关系(不必说明理由); (2)如图2,过E作BC的垂线,交圆于G,连

问题描述:

如图1,在等边△ABC中,AD⊥BC于点D,一个直径与AD相等的圆与BC相切于点E、与AB相切于点F,连接EF.

(1)判断EF与AC的位置关系(不必说明理由);
(2)如图2,过E作BC的垂线,交圆于G,连接AG,判断四边形ADEG的形状,并说明理由;
(3)求证:AC与GE的交点O为此圆的圆心.

(1)EF∥AC;(2)四边形ADEG为矩形;理由:∵EG⊥BC,E为切点,∵BC为圆O的切线,∴EG为直径,∴EG=AD;又∵AD⊥BC,EG⊥BC,∴AD∥EG,由EG=AD,AD∥EG,得出四边形ADEG为平行四边形,∵∠ADE=90°,∴平行四边形...