如图,AB是⊙O直径,CB是⊙O的切线,切点为B,OC平行于弦AD.求证:DC是⊙O的切线.

问题描述:

如图,AB是⊙O直径,CB是⊙O的切线,切点为B,OC平行于弦AD.
求证:DC是⊙O的切线.

证明:连接OD;
∵OA=OD,
∴∠A=∠ADO.
∵AD∥OC,
∴∠A=∠BOC,∠ADO=∠COD.
∴∠BOC=∠COD.
∵OB=OD,OC=OC,
∴△OBC≌△ODC.
∴∠OBC=∠ODC,又BC是⊙O的切线.
∴∠OBC=90°.
∴∠ODC=90°.
∴DC是⊙O的切线.
答案解析:连接OD,欲证明DC是⊙O的切线,只要证明CD⊥OD即可.
考试点:圆的切线的性质定理的证明.
知识点:本题考查切线的性质和判定及圆周角定理的综合运用,属于基础题.