【高一数学】f(x)满足:f(x)+1为奇函数,f(x-1)为偶函数,并且f(-1)=0,那么f(1)+f(2)+…+f(2010
问题描述:
【高一数学】f(x)满足:f(x)+1为奇函数,f(x-1)为偶函数,并且f(-1)=0,那么f(1)+f(2)+…+f(2010
已知函数f(x)满足:f(x)+1为奇函数,f(x-1)为偶函数,并且f(-1)=0,那么f(1)+f(2)+…+f(2010)=?
求详解!
答
f(x)+1为奇函数,所以 f(0)+ 1 = -(f(0)+1),从而得f(0)= -1.f(x-1)为偶函数,所以f(x-1) = f(-x-1) ①在由f(x)+1为奇函数得:f(-x-1) + 1 = -(f(x+1)+1),即f(-x-1) = -f(x+1)-2 ②由①②两式...