等差数列{an},{bn}的前n项和分别为Sn和Tn,若SnTn=2n3n+1,则limn→∞anbn=______.
问题描述:
等差数列{an},{bn}的前n项和分别为Sn和Tn,若
=Sn Tn
,则2n 3n+1
lim n→∞
=______. an bn
答
∵
=Sn Tn
,2n 3n+1
∴
=an bn
=a1+a2n−1 b1+b2n−1
=S2n−1 T2n−1
=2(2n−1) 3(2n−1)+1
2n−1 3n−1
∴
lim n→∞
=an bn
lim n→∞
=2n−1 3n−1
lim n→∞
=2−
1 n 3−
1 n
2 3
故答案为:
2 3
答案解析:利用等差数列的性质,结合等差数列的前n项和公式,可求
,进而可求an bn
lim n→∞
.an bn
考试点:数列的极限.
知识点:本题考查等差数列的性质,等差数列的前n项和公式,考查数列的极限,正确求
是关键.an bn