等差数列{an},{bn}的前n项和分别为Sn和Tn,若SnTn=2n3n+1,则limn→∞anbn=______.

问题描述:

等差数列{an},{bn}的前n项和分别为Sn和Tn,若

Sn
Tn
=
2n
3n+1
,则
lim
n→∞
an
bn
=______.

Sn
Tn
=
2n
3n+1

an
bn
=
a1+a2n−1
b1+b2n−1
=
S2n−1
T2n−1
=
2(2n−1)
3(2n−1)+1
=
2n−1
3n−1

lim
n→∞
an
bn
=
lim
n→∞
2n−1
3n−1
=
lim
n→∞
2−
1
n
3−
1
n
=
2
3

故答案为:
2
3

答案解析:利用等差数列的性质,结合等差数列的前n项和公式,可求
an
bn
,进而可求
lim
n→∞
an
bn

考试点:数列的极限.
知识点:本题考查等差数列的性质,等差数列的前n项和公式,考查数列的极限,正确求
an
bn
是关键.